Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

xor(x, F) → x
xor(x, neg(x)) → F
and(x, T) → x
and(x, F) → F
and(x, x) → x
and(xor(x, y), z) → xor(and(x, z), and(y, z))
xor(x, x) → F
impl(x, y) → xor(and(x, y), xor(x, T))
or(x, y) → xor(and(x, y), xor(x, y))
equiv(x, y) → xor(x, xor(y, T))
neg(x) → xor(x, T)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

xor(x, F) → x
xor(x, neg(x)) → F
and(x, T) → x
and(x, F) → F
and(x, x) → x
and(xor(x, y), z) → xor(and(x, z), and(y, z))
xor(x, x) → F
impl(x, y) → xor(and(x, y), xor(x, T))
or(x, y) → xor(and(x, y), xor(x, y))
equiv(x, y) → xor(x, xor(y, T))
neg(x) → xor(x, T)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

AND(xor(x, y), z) → AND(x, z)
AND(xor(x, y), z) → XOR(and(x, z), and(y, z))
IMPL(x, y) → AND(x, y)
IMPL(x, y) → XOR(and(x, y), xor(x, T))
EQUIV(x, y) → XOR(y, T)
IMPL(x, y) → XOR(x, T)
OR(x, y) → XOR(x, y)
AND(xor(x, y), z) → AND(y, z)
NEG(x) → XOR(x, T)
EQUIV(x, y) → XOR(x, xor(y, T))
OR(x, y) → AND(x, y)
OR(x, y) → XOR(and(x, y), xor(x, y))

The TRS R consists of the following rules:

xor(x, F) → x
xor(x, neg(x)) → F
and(x, T) → x
and(x, F) → F
and(x, x) → x
and(xor(x, y), z) → xor(and(x, z), and(y, z))
xor(x, x) → F
impl(x, y) → xor(and(x, y), xor(x, T))
or(x, y) → xor(and(x, y), xor(x, y))
equiv(x, y) → xor(x, xor(y, T))
neg(x) → xor(x, T)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

AND(xor(x, y), z) → AND(x, z)
AND(xor(x, y), z) → XOR(and(x, z), and(y, z))
IMPL(x, y) → AND(x, y)
IMPL(x, y) → XOR(and(x, y), xor(x, T))
EQUIV(x, y) → XOR(y, T)
IMPL(x, y) → XOR(x, T)
OR(x, y) → XOR(x, y)
AND(xor(x, y), z) → AND(y, z)
NEG(x) → XOR(x, T)
EQUIV(x, y) → XOR(x, xor(y, T))
OR(x, y) → AND(x, y)
OR(x, y) → XOR(and(x, y), xor(x, y))

The TRS R consists of the following rules:

xor(x, F) → x
xor(x, neg(x)) → F
and(x, T) → x
and(x, F) → F
and(x, x) → x
and(xor(x, y), z) → xor(and(x, z), and(y, z))
xor(x, x) → F
impl(x, y) → xor(and(x, y), xor(x, T))
or(x, y) → xor(and(x, y), xor(x, y))
equiv(x, y) → xor(x, xor(y, T))
neg(x) → xor(x, T)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 10 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

AND(xor(x, y), z) → AND(x, z)
AND(xor(x, y), z) → AND(y, z)

The TRS R consists of the following rules:

xor(x, F) → x
xor(x, neg(x)) → F
and(x, T) → x
and(x, F) → F
and(x, x) → x
and(xor(x, y), z) → xor(and(x, z), and(y, z))
xor(x, x) → F
impl(x, y) → xor(and(x, y), xor(x, T))
or(x, y) → xor(and(x, y), xor(x, y))
equiv(x, y) → xor(x, xor(y, T))
neg(x) → xor(x, T)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


AND(xor(x, y), z) → AND(x, z)
AND(xor(x, y), z) → AND(y, z)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(AND(x1, x2)) = (2)x_1   
POL(xor(x1, x2)) = 1 + x_1 + (4)x_2   
The value of delta used in the strict ordering is 2.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

xor(x, F) → x
xor(x, neg(x)) → F
and(x, T) → x
and(x, F) → F
and(x, x) → x
and(xor(x, y), z) → xor(and(x, z), and(y, z))
xor(x, x) → F
impl(x, y) → xor(and(x, y), xor(x, T))
or(x, y) → xor(and(x, y), xor(x, y))
equiv(x, y) → xor(x, xor(y, T))
neg(x) → xor(x, T)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.